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ESTIMATION FOR MODIFIED DATA 

 

• Definition 12.1 (14.1) – An observation is truncated from below (also called left truncated) at d if when it 

is below d it is not recorded, but when it is above d it is recorded at its observed value.  

An observation is truncated from above (also called right truncated) at u if when it is above u it is not 

recorded, but when it is below u it is recorded at its observed value.  

An observation is censored from below (also called left censored) at d if when it is below d it is  recorded 

as being equal to d, but when it is above d it is recorded at its observed value.  

An observation is censored from above (also called right censored)at u if when it is above u it is recorded 

as being equal to u, but when it is below u it is recorded at its observed value.  

• Comments: 

• Truncation - In insurance, truncation from below can happen when there is a deductible: A 

policyholder will not report a claim whose value is below the deductible. However the knowledge 

of “small” claims (number and amounts) can be important for a correct evaluation of the policy 

risk.  
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• Censoring – Let y  be the “correct” value, c the censoring point and x  the available data. 

� Censoring from below  




>

≤
=

cyy

cyc
x  

� Censoring from above  




≥

<
=

cyc

cyy
x  

� In insurance censoring from above is quite usual. If a policy pays no more than 10000 €  

for a claim and if the insurance company only records the payments made, any time a loss 

is above 10000 € the amount of the claim will be unknown but we will know that a 

payment of 10000 € has happened. 

� The censoring points could be known (defined by the insurance policy) or “random”. 

Random censoring occurs for instance when a policyholder decides to surrender his policy 

(data set D1). In any case we will know the censoring points that can differ from 

observation to observation. 

o From a statistical point of view, truncation is a more severe limitation than censoring. 

o When nothing else is said, truncation will mean left truncation and censoring right censoring. 
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• The individual data 

o For each observation 3 facts are needed:  

� Truncation point (if any) 

� The value of the observation 

� A flag to indicate if the observation was or was not censored 

o Notation (Loss Models) 

� jd  – truncation point. If there was no truncation 0=jd  (assuming that we are dealing 

with a positive valued variable); 

� The observation 

• jx  if not censored 

• ju  if censored 

� This notation is not usual. However, we will follow Loss Models notation. 
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Main objectives of the chapter 

• To estimate the survival function using complete data or using censored and truncated data 

• To estimate the cumulative hazard function using censored and truncated data and to use the 

estimated cumulative hazard function to estimate the survival function 

• To obtain confidence intervals (for a given x ) for both the survival and the cumulative hazard 

functions (different methods) 

• To generalize this approach to cover two situations 

o Kernel estimation – Method to estimate the density (distribution) function of a continuous 

random variable. 

o Approximation techniques – how to deal with aggregated data and large data sets, namely when 

we are only interested by the survival function values at some point (usually the end of each 

year or quarter) 
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The Kaplan-Meier estimator 

• How to estimate the survival function using censored and truncated data? 

• The first step is to summarize the information in a useful manner: 

o Let kyyy <<< L21  be the k unique values that appear in the sample of uncensored values; 

Obviously  1nk ≤  where nn ≤1  is the number of uncensored values. 

o Let js  be the number of times the uncensored observation jy  appears in the sample, 

kj ,,2,1 L= .  Obviously  { }jij yxs ==#  and 11
ns

k

j j =∑ =
. 

o Let jr  be the risk set at jy .  At jy  we have under observation the “individuals” whose 

observation or censoring point are greater than or equal to jy  and whose truncation point is 

less than jy  (if the truncation point is greater than or equal to jy  , the “individual” is not yet 

under observation).  Formally,  

{ } { } { }jijijij yuyxydr <−<−<= ###     or  { } { } { }jijijij ydyuyxr ≥−≥+≥= ### .  □ 
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• Example 12.1 (14.1) – Using Data Set D2, calculate the jr  values. 

> #read data – usual notation 

> d=c(rep(0,30),0.3,0.7,1.0,1.8,2.1,2.9,2.9,3.2,3.4,3.9) 

> # w corresponds to the column “last observed”. Merges x and u 

> w=c(0.1,0.5,0.8,0.8,1.8,1.8,2.1,2.5,2.8,2.9,2.9,3.9,4.0,4.0, 

+  4.1,4.8,4.8,4.8,rep(5.0,14),4.1,3.1,3.9,5.0,4.8,4.0,5.0,5.0) 

>cs=c(rep(0,3),1,rep(0,5),rep(1,2),0,1,0,0,1,rep(0,16),1,1, 

+   rep(0,3),1,0,0) #value 1 = "died" 

> # Loss Models notation 

> x=w[cs==1] 

> u=w[cs==0]  

> y=sort(unique(x)) 

> # or y=as.numeric(names(table(x))); s=as.numeric(table(x)) 

> r=rep(0,length(y)); s=r; 

> for(i in 1:length(y)) { 

+   s[i]=sum(x==y[i]); r[i]=sum(d<y[i])-sum(x<y[i])-sum(u<y[i]);  

+   # r[i]=sum(d<y[i])-sum(w<y[i]); another option u is useless 

+   } 

> y; s; r 

[1] 0.8 2.9 3.1 4.0 4.1 4.8 

[1] 1 2 1 2 1 1 

[1] 30 26 26 26 23 21 
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• Basic idea of Kaplan-Meier estimator: Start with 1)0( =S  (usual assumption about the r.v.) and, at each 

value jy , estimate the conditional probability of survival (not having experienced the event), 

)|Pr( jjj yXyX ≥>=π . Once conditional probabilities have been estimated we use  

)Pr()Pr(
)Pr(

)Pr(
)Pr()( jjj

j

j

jj yXyX
yX

yX
yXyS ≥×=≥×

≥

>
=>= π  

 and we will assume that the survival function is constant between 1jy −  and jy , 1,2, ,j k= L . 

• The estimates are  

o 
j

jj

j
r

sr −
=π̂ . ( j jr s− ) – number of ind. surviving at jy  and jr  – risk set 

o ( ) ( ) )(ˆrP̂rP̂ 11 −− =>=≥ jjj ySyXyX .   No events in the sample between 1jy −  and jy  

o 1 1 2 1 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) (0)
j

j j j j j j j j ii
S y S y S y Sπ π π π π π π− − − − =

= × = × × = × × × × = ∏L  
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• Then 

1 1

1

1 11 :

1 1

1 1

( ) 2,3, ,

  or  0 or ....   or  0 or ....

i

j i i i i
n j j ki i y t

i i

k ki i i i
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t y t y

r s r s
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−
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    

    − − ≤ >   
     

∏ ∏

∏ ∏
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• Let us discuss the estimation of the survival function when kyt ≥ . 

o 
1

( )  
k i i

n k i
i

r s
S y

r=

 −
=  

 
∏  

o If kk rs = , then 0)( =tS  for kyt ≥  can make sense (after ky  the risk set is empty. However some 

previously censored observation can still be alive or survivors can exist among the population after 

ky ). 
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o If kk rs <  we know that at least ( )kk sr −  individuals survive at time kyt =  but there is no empirical 

data to complete the survival function. 3 options are available: 

� Keep the survival function at its last value, 
1

( )
k i i

n i
i

r s
S t

r=

 −
=  

 
∏ , kt y≥ . 

�  Keep the survival function at its last value until the last censoring time is reached and then 

declare the function to be 0,  

1( )     where last censoring time

0

k i i
ki

n i

r s
y t w

S t wr

w t

=

  −
≤ <  

= =  
 ≤

∏
 

We are imposing that no one survives after time w  and a step transition to 0. 

� Use an exponential curve to reduce the value of the survival function from its current value to 

zero. For instance, let ∏ = 






 −
=

k

i
i

ii

r

sr
s

1
*  and w  = max (last censoring time, ky ) and use 

wt

n ss
w

t
tS

/*)(*lnexp)( =







= , wt ≥  . We can combine this approach with the previous one 

i.e. we choose an upper value and declare the function to be 0 when t  is greater than this 

value.  
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• Example 12.2 (14.2) – Determine the Kaplan-Meier estimate for Data Set D2. 

Following example 14.1 

> pihat=(r-s)/r 

> Sn=cumprod(pihat) 

> Sn 

[1] 0.9666667 0.8923077 0.8579882 0.7919891 0.7575548 0.7214807 

 

 

Alternatively 

# read data - Data Set D2 - usual notation – see example 14.1 – d  w  cs  

> library(survival) 

Loading required package: splines 

> fit <- survfit(Surv(d,w,cs)~1) # kaplan-Meier and Greenwood by 

default  

> summary(fit) 
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Call: survfit(formula = Surv(d, w, 1 - cs) ~ 1) 

 time n.risk n.event entered censored survival std.err lower 95% CI  

  0.8     30       1       0        1    0.967  0.0328        0.905 

  2.9     26       2       2        0    0.892  0.0589        0.784 

  3.1     26       1       0        0    0.858  0.0659        0.738 

  4.0     26       2       0        1    0.792  0.0755        0.657 

  4.1     23       1       0        1    0.758  0.0797        0.616 

  4.8     21       1       0        3    0.721  0.0837        0.575 

 upper 95% CI 

        1.000 

        1.000 

        0.997 

        0.955 

        0.931 

        0.906 

> plot(fit) 

 

Note: As we will see, the confidence intervals (CI) are calculated using a different method. 
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The Nelson-Aalen estimator 

• Aim: To estimate the cumulative hazard rate. Remember from previous chapter that, if ( )H t  is 

differentiable, ( ) ( )
t

H t h u du
−∞

= ∫  where ( ) ( ) / ( )h u f u S u=  

• Then our estimate (estimator) is 
:

ˆ ( )
i

i

i y t
i

s
H t

r≤
=∑   

• The Nelson-Aalen estimator is  

1 1

1

1 11 :

1 1

0 0 0

ˆ ( ) 2,3, ,
i

j i i
j j ki i y t

i i

k ki i
k ki i

i i

t y t y

s s
H t y t y j k y t y

r r

s s
y t t y

r r

−

−= ≤

= =

 
 

≤ < < 
 

= ≤ < = = ≤ ≤ 
 
 

≤ > 
 

∑ ∑

∑ ∑

L  

• As we have already seen, we can also use the Nelson-Aalen estimator to get another estimator of the 

survival function  
)(ˆ

)(ˆ tH
etS

−=  and for kt y>  we can return to the previous discussion. 
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• Example 12.3 (14.3) – Determine the Nelson-Aalen estimate of the survival function for data set D2.  

See examples 14.1 and 14.2 

> Hn=cumsum(s/r) 

> Hn 

[1] 0.03333333 0.11025641 0.14871795 0.22564103 0.26911929 

0.31673833 

> Sn_H=exp(-Hn) 

> Sn_H 

[1] 0.9672161 0.8956045 0.8618122 0.7980045 0.7640521 0.7285214 
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Means, variances and interval estimation 

• The first part of this section refers to complete data and has already been presented. Now we will 

consider censored and/or truncated data. 

• Our main concern is to approximate the variance of the Kaplan-Meier estimator (or of the Nelson-Aalen 

estimator) of )(tS  to calculate confidence bands – a confidence interval for each value of t. 

• Approximate confidence interval for )(tS : )(râv)( 2/ tSztS nn ×± α  keeping in mind that the lower limit 

must be greater than or equal to 0 and the upper limit lesser than or equal to 1. Question: How to 

estimate var ( )nS t ? 

• Kaplan-Meier estimator of )(tS :  
1

1
( )

j i i
n i

i

r s
S t

r

−

=

 −
=  

 
∏ , jj yty <≤−1 , 2,3, ,j k= L . 

1
( )

j i i
n j i

i

r s
S y

r=

 −
=  

 
∏  

• The usual estimate for the variance is given by Greenwood’s formula: ( )
( )

2

1
ˆvar ( ) ( )

j i
n j n j i

i i i

s
S y S y

r r s=
≈ ×

−
∑   

See Loss Models for a deduction of Greenwood’s approximation or use the delta method. □ 

• Greenwood’s formula can be written as ( )
( )

2

:
ˆvar ( ) ( )

i

i
n n i y t

i i i

s
S t S t

r r s≤
≈ ×

−
∑  
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• Example 12.9 (14.12) – Using Data Set D1, estimate the variance of )3(30S  both directly and using 

Greenwood’s formula. Do the same for 32 q̂ . 

Solution: 

9.0
30

27
)3( ==nS ;   

( ) ( )
( )

1481.0
27

4

30/27

30/2330/27

)3(

)5()3(
ˆ32 ≈=

−
=

−
=

n

nn

S

SS
q  

Directly – There is no censoring or truncation 

( )
( ) ( ) ( )

003.0
30

81

30

30/330/27)3(1)3(
)3(râv

3
==

×
=

−×
=

n

SS
S nn

n  

( ) ( ) ( ) 0047.0
27

92
232723

27

11
)3()3(|ˆrâv

335353
3

32 ≈=−××=−== nnn
n

SSq n  

Greenwood’s formula 

301 =r ; 11 =s ; 292 =r ; 22 =s  

( )
2 2

3

27 1 2 27 27 2 30 81
ˆvar (3) 0.003

30 30 29 29 27 30 30 29 27 30
nS

+ ×     
≈ × + = × = =     

× × × ×     
 

To apply Greenwood’s formula to estimate ( ))3()3(|ˆvar 2 nx SSq =  we must consider a sub-sample of 

size 3n  (only the 27 observations greater than 3 are relevant) and estimate )5(1 S−  using this 
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subsample. With this sub-sample (index 1 refers to the value 3.1, index 2 to the value 4.0 and index 3 to 

the value 4.8) 271 =r ; 11 =s ; 262 =r ; 12 =s ; 253 =r ; 23 =s ; 

( )
3

2

32
27

92

2325

2

2526

1

2627

1

27

23
)3()3(|ˆrâv =









×
+

×
+

×
×








≈= nSSq  

 

• Example 12.10 (14.13) – Repeat example 12.9 (14.12), this time using all 40 observations in Data Set D2 

and the incomplete information due to censoring and truncation. 

From examples 14.1 and 14.2 we have 

j  1 2 3 4 5 6 

jy  0.8 2.9 3.1 4.0 4.1 4.8 

jr  30 26 26 26 23 21 

js  1 2 1 2 1 1 

nS  0.9667 0.8923 0.8580 0.7920 0.7576 0.7215 

 

2

1 3

29 24
(3) 0.8923

30 26j

j j j j

n j y
j j

r s r s
S

r r= ≤

   − −
= = = × =      

   
∏ ∏  

2 3

(5) 0.7215
ˆ 1 1 0.1914

(3) 0.8923

n

n

S
q

S
= − = − ≈  
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Directly – not possible due to censoring and truncation 

 

Greenwood’s formula 

301 =r ; 11 =s ; 262 =r ; 22 =s  

( ) 2 1 2
ˆvar (3) 0.8923077 0.003467152

30 29 26 24
nS

 
≈ × + = 

× × 
 

To apply the Greenwood’s formula to estimate ( ))3()3(|ˆvar 2 nx SSq =  we will keep the subscripts 

263 =r ; 13 =s ; 264 =r ; 24 =s ; 235 =r ; 15 =s ; 216 =r ; 16 =s ; 

( )

( )

2 3

2

:3 5

2

(5) (5)
ˆ ˆ ˆˆvar | (3) (3) var 1 | (3) (3) var | (3) (3)

(3) (3)

(5)

(3)

0.7215 1 2 1 1

0.8923 26 25 26 24 23 22 21 20

0.005950

i

n n
n n n

n n

n i

i y
n i i i

S S
q S S S S S S

S S

S s

S r r s< ≤

   
= = − = = =   

   

 
≈ × 

− 

   
= × + + +   

× × × ×   

=

∑  

 

A new approach to obtain confidence intervals for )(tS   



 

19 

 

• To guarantee that the limits of the confidence interval for ( )nS t  are bounded by 0 and 1, we can use an 

alternative methodology.  

• The idea is to construct confidence intervals for a function ( )( )g S t  (monotonic and unbounded) and 

then to use the inverse of this function to get a confidence interval for ( )S t .  

• To be more explicit let us consider ( ) ( )( ) ln ln ( )g S t S t= −  and, for each given value of t, we will use  

( ) ( )( ) ln ln ( )n ng S t S t= −  to estimate ( )( )g S t  . Note that ( )( )g S t−∞ < < +∞ . 

□ Question: Why is ( ) ( )( ) ln ln ( )g S t S t= −  a suitable function? 

•  To obtain a confidence interval for ( )( )g S t , we use the delta method, i.e. 

( ) ( ) ( ) ( ) ( )( ( )) ( ) ( ) ( ) ( ) ( )n nE g S t g S t E S t S t g S t g S t′≈ + − =   For each t, )(tSn  is an unbiased 

estimator of )(tS  

( )( ) ( ) ( )( ) ( )
2 2

var( ( ( ))) ( ) var ( ) ( ) ( ) var ( )n n ng S t g S t S t S t g S t S t′ ′≈ − =  

( ) ( )ˆ ˆ( ( ( ))) var( ( ( ))) ( ) var ( )n n n nse g S t g S t g S t S t′= ≈       



 

20 

 

Note: ( ) ( )xxg lnln −=  then ( )
xx

xg
ln

1
=′  and, for 1)(0 << tSn , ( )

)(ln)(

1
)(

tStS
tSg

nn

n =′ , i.e. 

( )
)(ln)(

1
)(

tStS
tSg

nn

n −=′ . 

• The bounds of the approximate confidence interval for ( )( )g S t  (level α−1 ) are given by 

( ) ( )( )/2( ) ( )n ng S t z se g S tα±  i.e. ( )
( )

)(ln)(

)(râv
)(lnln 2/

tStS

tS
ztS

nn

n

n
×

±− α  

• Now, using this result, we will construct a confidence interval for )(tS . 

� ( ) ( )( ( )) ln ln ( ) ( ) exp exp( ( ( )))g S t S t S t g S t= − ⇔ = −  

� Using this result we get ( )( )
U

nUB S t=  and ( )
1/

( )
U

nLB S t=  with 
( )












×
=

)(ln)(

)(râv
exp 2/

tStS

tS
zU

nn

n

α  

� Then the confidence interval is ( ) ( )( )U

n

U

n tStS )(;)(
/1

. This interval will always be inside the 

range 0 to 1 and is referred to as the log-transformed interval. 
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• Example 12.11 (14.14) – Obtain the log-transformed confidence interval for )3(S  as in example 12.10 

(14.13). 

 

Direct Method 

( )003467152.096.18923077.0;003467152.096.18923077.0 ×+×− , i.e. (0.7769; 1.0077) and then 

(0.7769; 1.00) 

 

 

Log-transformed interval 

321389.0
8923077.0ln8923077.0

003467152.0
96.1exp =









×
×=U  

( )321389.0321389.0/1 8923077.0;8923077.0  , i.e. (0.7015; 0.9640) 
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Confidence intervals for the cumulative hazard function 

• Similar results are available using the Nelson-Aalen estimator.  

• We will use the same set of hypothesis: the iy  and the risk sets ( ir ) are known (not random) and there is 

conditional independence among the iS .  

• We will assume that the number of “deaths” at iy , iS , follows approximately a Poisson distribution with 

parameter ( )i ir h y . Similar (but not equal) results can be obtained using a binomial distribution.  

• Assuming a Poisson distribution, the variance of iS , given ir , is given by ( )i ir h y  and, since ( )ih y  is 

estimated using ii rs / , we could use the approximation ˆvar( ) /i i i i iS r s r s= × = . 
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• Then, assuming independence among the /i iS r , we get 

( ) ( )
2 21 1 1

ˆvar
ˆˆ ˆvar ( ) var

j j jii i
j i i i

i i i

SS s
H y

r r r= = =

 
= = = 

 
∑ ∑ ∑  or  ( ) 2:

ˆˆvar ( )
i

i

i y t
i

s
H t

r≤
=∑  

The “Formulae and Tables for Examination” book uses the binomial approach and get 

( ) ( )
2 3: :

ˆvar ( )ˆˆvar ( )
i i

i i i i

i y t i y t
i i

S s r s
H t

r r≤ ≤

−
= =∑ ∑  

In the remaining we will use Loss Models formula. 

• A direct (linear) confidence interval is then  given by ( )/2
ˆ ˆˆ( ) var ( )H t z H tα±   

• A log-transformed confidence interval is given by ( )ˆ ˆ( ) (1 / ); ( )H t U H t U× ×  where 

( )/2
ˆˆvar ( )

exp
ˆ ( )

z H t
U

H t

α
 
 =
  
 

  

The formula is deduced using the Delta method with ( ) ( )ˆ ˆ( ) ln ( )g H t H t=  since  ( )ˆln ( )H t is unbounded. 
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• Example 12.12 (14.15) – Construct an approximate 95% confidence interval for )3(H  by each formula 

using all 40 observations in Data set D2. 

 

Let us take advantage of Example 14.13. 

 
2

: 3 1

1 2ˆ (3) 0.11026
30 26i

i i

i y i
i i

s s
H

r r≤ =
= = = + =∑ ∑  and ( ) 2

21
ˆˆvar (3) 0.0040697i

i
i

s
H

r=
= =∑  

Direct confidence interval:  (-0.01478; 0.2352393) → (0; 0.2352393) 

 

Log-transformed confidence interval: (0.035472; 0.342702) 

   
0.0040697

exp 1.96 3.108225
0.11026

U
 

= = 
 

 

□Question: How to use these results in order to get CI for (3)S ? 

Direct    →  (0.79038; 1) 

  Log-transformed  → (0.70985; 0.96515)
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KERNEL DENSITY MODELS 

• Although the empirical distribution converges to the distribution of the random variable, as ∞→n , a 

main point remains: for finite samples the empirical distribution is always discrete, even if the 

underlying variable is continuous. This problem is more annoying when the sample size is moderate. 

• Our aim is to smooth, using non parametric methods (i.e. ignoring the functional form of the density), 

the empirical distribution to obtain an estimate of the continuous density (or distribution) function.  

 

• Definition 12.2 (14.2) – A kernel density estimator of a distribution function is  

∑ =
=

k

j yj xKypxF
j1

)()()(ˆ  

And the estimator of the density function is 

∑ =
=

k

j yj xkypxf
j1

)()()(ˆ . 

The function )(xk y  is called the kernel.  
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• Comments 

o The kernel is a non-negative real-valued integrable function satisfying 1)( =∫
∞+

∞−
dxxk y  to 

guarantee that the kernel method originates a density function. We will also have, 

∫ ∞−
=

x

yy duukxK )()( . 

□Question: How can we guarantee that ˆ ( )f x  is a density function? 

o In much cases we impose that ydxxkx y =∫
∞+

∞−
)( , that is the expected value is unchanged by the 

kernel.  

o )( jyp  is the probability assigned to the value jy , kj ,,2,1 L= , by the empirical distribution. : If 

all the sample values are unique we get ( ) 1 /jp y n=  and then ∑ =
=

n

i x xKnxF
i1

)()/1()(ˆ  and 

∑ =
=

n

i x xknxf
i1

)()/1()(ˆ  respectively. 
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• Definition 12.3 (14.3) (using a different notation) 

o Uniform kernel:  

( ) ( ) ( ) ( )
1 1

0

( ) 2 2 1 / (2 )

0

y

x y b

k x b I x y b b I y b x y b b y b x y b

x y b

− −

< −


= − ≤ = − ≤ ≤ + = − ≤ ≤ +
 > +

 

o Triangular kernel:  

2

22

0

( ) /
( ) ( / 1)

( ) /

0

y

x y b

x y b b y b x yb y x
k x I y x b

y b x b y x y bb

x y b

< −
 − + − ≤ ≤− − 

= − ≤ = 
+ − ≤ ≤ +

 > +

 

o Gamma kernel: ( ) )(
)()/(

)( ;0

/1

xI
y

ex
xk

yx

y ∞+

−−

Γ
=

αα α

αα

  

Gamma density with mean y  and variance α/2
y . The lesser α  the smoother the kernel. 

How to choose α ? One can use  
2

4 2ˆ ˆ( ' / ' ) 1nα µ µ= −  (Typo in the book)  

Remember that ˆ ( )k

k j jy p yµ′ =∑  
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• Comments:  

o b is called the bandwidth . The higher is b the smoother will be the kernel density. 

o The first and second kernels are symmetric around y. In symmetric kernels the bandwidth is usually 

much more important than the choice of a particular kernel.  

o The third kernel is asymmetric and α  plays a role similar to the bandwidth. Note that the gamma 

kernel can be used only with positive valued random variables. 

 

• How to get )(xK y ? 

o ∫ ∞−
=

x

yy duukxK )()(  

o For example in the uniform case,  

0 0

1
( )

2 2

1 1

x

y
y b

x y b x y b

x y b
K x du y b x y b y b x y b

b b

x y b x y b

−

< − < − 
  − + 

= − ≤ ≤ + = − ≤ ≤ + 
 

> + > +  

∫  
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• In the remaining of the course we will follow Definition 12.2 (14.2). However this is not the standard 

definition of a kernel density estimator. For a standard presentation, see Wasserman (2004). 

A kernel is any smooth function K  such that 0)( ≥xK , 1)( =∫
+∞

∞−
dxxK , 0)( =∫

+∞

∞−
dxxKx  and 

∞<= ∫
+∞

∞−
dxxKxK )(22σ .  

Given a kernel  K  and a positive number h , called the bandwidth, the kernel density estimator is 

defined to be ∑ =







 −
=

n

i

i
n

h

Xx
K

hn
xf

1

11
)(ˆ .  

Examples of kernels are: 

• The Gaussian kernel: ( ) 2/2/1 2

2)( u
euK

−−
= π  

• The Epanechnikov kernel: ( )5
5

1
54

3
)(

2

<







−

×
= uI

u
uK  

• The uniform kernel: ( )1
2

1
)( ≤= uIuK  

• The triangular kernel: ( ) ( )11)( ≤−= uIuuK  
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All these kernels act symmetrically around each sample point. In this setup the choice of a particular 

kernel is generally much less important than the choice of the bandwidth. They are methods to 

approximate the “best” choice of the bandwidth (see Wasserman (2004)). 

• Example 12.13 (14.16) – Determine the kernel density estimate for Example 11.2 (13.2) using each of 

the three kernels. 

We will use only the uniform kernel with b=0.1 and b=1.0 (try b=0.5 and get the results for the other 

situations) 

 

Sample ( )1.0;1.3;1.5;1.5;2.1;2.1;2.1;2.8  

 

jy  1.0 1.3 1.5 2.1 2.8 

( )jp y  1/8 1/8 2/8 3/8 1/8 
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Bandwith b=0.1 then 1/ (2 ) 5b =  

1.0  

 

→ 

0.9 1.1 

1.3 1.2 1.4 

1.5 1.4 1.6 

2.1 2.0 2.2 

2.8 2.7 2.9 

 

5 / 8 0.9 1.1

5 / 8 1.2 1.4

10 / 8 1.4 1.6
ˆ( )

15 / 8 2.0 2.2

5 / 8 2.7 2.9

0 otherwise

x

x

x
f x

x

x

< <
 < <

 < <

= 
< <

 < <



   Discuss the problem related to the intervals limit  
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Bandwith b=1.0 then 1/ (2 ) 0.5b =  

 

1.0  

 

→ 

0.0 2.0 

1.3 0.3 2.3 

1.5 0.5 2.5 

2.1 1.1 3.1 

2.8 1.8 3.8 

 

1/16 0 0.3

2 /16 0.3 0.5

4 /16 0.5 1.1

7 /16 1.1 1.8

8 /16 1.8 2.0
ˆ( )

7 /16 2.0 2.3

6 /16 2.3 2.5

4 /16 2.5 3.1

1/16 3.1 3.8

0 otherwise

x

x

x

x

x
f x

x

x

x

x

< <
 < <

 < <


< <
 < <

= 
< <

 < <


< <
 < <


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Bandwith b=0.5 then 1/ (2 ) 1b =  

1.0  

 

→ 

0.5 1.5 

1.3 0.8 1.8 

1.5 1.0 2.0 

2.1 1.6 2.6 

2.8 2.3 3.3 

 

1/ 8 0.5 0.8

2 / 8 0.8 1.0

4 / 8 1.0 1.5

3 / 8 1.5 1.6

6 / 8 1.6 1.8
ˆ( )

5 / 8 1.8 2.0

3 / 8 2.0 2.3

4 / 8 2.3 2.6

1/ 8 2.6 3.3

0 otherwise

x

x

x

x

x
f x

x

x

x

x

< <
 < <

 < <


< <
 < <

= 
< <

 < <


< <
 < <


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Using R 

y=c(1.0,1.3,1.5,2.1,2.8); s=c(1,1,2,3,1); n=sum(s) 

p_y=s/n 

x=seq(0,4,by=0.025); fx=rep(NA,length(x)) 

 

# Uniform kernel 

b=0.5; LU=y-b; UU=y+b 

for(i in 1:length(x)) fx[i]=sum(p_y*dunif(x[i],LU,UU)) 

plot(x,fx,type="l",main="example 14.16 - Uniform kernel with b=0.5") 

 

# Gamma kernel 

alpha=50 

for(i in 1:length(x)) fx[i]=sum(p_y*dgamma(x[i],shape=alpha,scale=y/alpha)) 

plot(x,fx,type="l",main="example 14.16 - gamma kernel with alpha=50") 
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• Example (New) – Using the data of the previous example estimate (2)F  using a uniform kernel with 

b=0.5.  

Sample ( )1.0;1.3;1.5;1.5;2.1;2.1;2.1;2.8  

 

jy  1.0 1.3 1.5 2.1 2.8 

( )jp y  1/8 1/8 2/8 3/8 1/8 

 

1 1 2 3 (2 2.1 0.5) 1ˆ (2) 1 1 1 0
8 8 8 8 1 8

5.2

8

F
− +

= × + × + × + × + ×

=
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APPROXIMATIONS FOR LARGE DATA SETS – We will skip this section  


